DR SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE
 (AUTONOMOUS)

COIMBATORE - 641049
21UMA503: LINEAR ALGEBRA
III B.SC. MATHEMATICS
Unit V Questions

Definition: Minimal Polynomial of a matrix.

The Minimal Polynomial of a matrix is defined as the monic polynomial lowest degree satisfied by the satisfied by the matrix.

Remarks

1. The Minimal Polynomial of a matrix divides every polynomial satisfied by the matrix.
2. The Characteristic Polynomial and the the Minimal Polynomial have the same characteristic factors.
A scalar is an eigen value of a matrix A if and only if it is the root of the minimal polynomial $m_{A}(x)$.

Define the following terms (i) Jordan Block of a matrix (ii) Jordan Canonical Form of a matrix. COV (L-I).

Solution: (i) Jordan Block
A matrix is called Jordan Block if all the diagonal elements of the matrix are the same scalar and always 1 occurs over the diagonal elements. The following are the Examples of Jordan Blocks

$$
\left[\begin{array}{ll}
5 & 1 \tag{10}\\
0 & 5
\end{array}\right]\left[\begin{array}{lll}
8 & 1 & 0 \\
0 & 8 & 1 \\
0 & 0 & 8
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(ii) Jordan Canonical Form of a matrix.

Every Square matrix A whose characteristic polynomial

$$
\Psi_{A}(t)=\left(t-\lambda_{1}\right)^{n_{1}}\left(t-\lambda_{2}\right)^{n_{2}} \ldots \ldots .\left(t-\lambda_{r}\right)^{n_{r}}
$$

And the minimal polynomial

$$
m_{A}(t)=\left(t-\lambda_{1}\right)^{m}\left(t-\lambda_{2}\right)^{m} \ldots \ldots .\left(t-\lambda_{r}\right)^{m}
$$

can be reduced to a block diagonal matrix $\left[\begin{array}{ccc}J_{1 j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & J_{r j}\end{array}\right]$ which is called Jordan Canonical Form, where $J_{i j}$ are Jordan Blocks of the form

$$
\left[\begin{array}{cccccc}
\lambda_{i} & 1 & 0 & \ldots & 0 & 0 \\
0 & \lambda_{i} & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & \lambda_{i}
\end{array}\right], \mathrm{i}=1,2,3 \ldots . \mathrm{r} \text { and for each } \lambda_{i} \text { the corresponding }
$$

Blocks.
Properties of Jordan Canonical Form
Consider the Jordan Canonical Form $\left[\begin{array}{ccc}J_{1 j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & J_{r j}\end{array}\right]$
(i) There is atleast $1 J_{i j}$ of order m and all the other $J_{i j}$ are of order less than m.
(ii) The sum of the orders of $J_{i j}$ is n_{i}
(iii) The number of $J_{i j}$ equals the Geometric multiplicity of λ_{i}.
(iv) The number of $J_{i j}$ of each possible order is uniquely determined by A.

When do we say an Operator T is said to be diagnosable? COV (L-II).

Solution: Let V be an n dimensional vector space. An operator $\mathrm{T}: V \rightarrow V$ is said to be diagonalizable if its matrix representation is diagonalizable.

When do we say a matrix A is said to be diagonalizable?
Solution: A matrix A is said to be diagonalizable if it is similar to a diagonal matrix D. That is there exists a non - singular matrix P such that $D=P^{-1} A P$.

When do we say a matrix A is said to be orthogonally diagonalizable? COV (L- II).

Solution:

Section B A matrix A is said to be orthogonally diagonalizable if there exists an orthogonal matrix P such that $D=P^{-1} A P$.

1. Find the minimal polynomial of the matrix $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right)$ CO V (L - III).

Solution: Let $A=\left[\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right]$
Then the Characteristic polynomial of A is $|A-x I|=0$.

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{cccc}
2-x & 1 & 0 & 0 \\
0 & 2-x & 0 & 0 \\
0 & 0 & 1-x & 1 \\
& 0 & 0 & -2
\end{array}\right.\right)=0 \\
& \Rightarrow(2-x)\left|\begin{array}{ccc}
(2-x) & 0 & 0 \\
0 & (1-x) & 1 \\
0 & -2 & (4-x)
\end{array}\right|=0 \\
& \Rightarrow(2-x)(2-x)\left|\begin{array}{cc}
(1-x) & 1 \\
-2 & (4-x)
\end{array}\right|=0 \\
& \Rightarrow(2-x)^{2}[(1-x)(4-x)+2]=0 \\
& \Rightarrow(2-x)^{2}\left(x^{2}-5 x+6\right)=0 \\
& \Rightarrow(x-2)^{3}(x-3)=0
\end{aligned}
$$

Therefore the Characteristic polynomial of A is $(x-2)^{3}(x-3)$
The possible minimal polynomials are

$$
\begin{gathered}
f(x)=(x-3)(x-2) \quad \mathrm{g}(x)=(x-3)(x-2)^{2} \quad h(x)=(x-3)(x-2)^{3} \\
f(A)=(A-3 I)(A-2 I) \\
f(A)=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -2 & 1 \\
0 & 0 & -2 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & -2 & 2
\end{array}\right)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \neq 0 \\
\mathrm{~g}(A)=(A-3 I)(A-2 I)^{2} \\
\mathrm{~g}(A)=(A-3 I)(A-2 I)(A-2 I) \\
g(A)=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2 \\
0 & 0 & -2 \\
0
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & -2 & 2
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & -2 & 2
\end{array}\right) \\
g(A)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
\end{gathered}
$$

Therefore minimal polynomial of A is $m_{A}(x)=(x-3)(x-2)^{2}$.
2. Diagonalize the matrix $\quad A=\left(\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right)$

COV (L-III).

Solution:

Step I: To find Eigen values

Let the given matrix be $A=\left(\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right)$. Then the Characteristic equation is $|A-\lambda I|=0$.

$$
\begin{aligned}
& \Rightarrow|A-\lambda I|=\left|\left(\begin{array}{cc}
1 & 4 \\
2 & -1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\left|\begin{array}{cc}
1-\lambda & 4 \\
2 & -1-\lambda
\end{array}\right|=0 \\
& \Rightarrow-(1-\lambda)(1+\lambda)-8=0 \\
& \Rightarrow-\left(1-\lambda^{2}\right)-8=0 \\
& \Rightarrow \lambda^{2}=9 \Rightarrow \lambda=3,-3 \text { which are the eigen values of } \mathrm{A} .
\end{aligned}
$$

Step 2: To find Eigen vectors and P matrix.

Case (i) Put $\lambda=-3$

$$
\begin{aligned}
& (A-\lambda I) X=0 \text { where } X=\binom{x_{1}}{x_{2}} \\
\Rightarrow & \left(\begin{array}{cc}
1-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& (1-\lambda) x_{1}+4 x_{2}=0 \\
& 2 x_{1}-(1+\lambda) x_{2}=0
\end{aligned}
$$

Put $\lambda=-3$ in the above equations we get,

$$
\begin{array}{r}
4 x_{1}+4 x_{2}=0 \\
2 x_{1}+2 x_{2}=0 \\
\Rightarrow x_{1}+x_{2}=0 \\
\Rightarrow x_{1}=-x_{2} \\
\Rightarrow \frac{x_{1}}{-1}=\frac{x_{2}}{1}
\end{array}
$$

Therefore eigen vector corresponding to $\lambda=-3$ is $X_{1}=\binom{-1}{1}$
Case (ii) Put $\lambda=3$ in the above equations we get,

$$
\begin{aligned}
& -2 x_{1}+4 x_{2}=0 \\
& 2 x_{1}-4 x_{2}=0 \\
& \Rightarrow 2 x_{1}=4 x_{2} \\
& \Rightarrow \frac{x_{1}}{4}=\frac{x_{2}}{2}
\end{aligned}
$$

$$
\Rightarrow \frac{x_{1}}{2}=\frac{x_{2}}{1}
$$

Therefore eigen vector corresponding to $\lambda=3$ is $X_{2}=\binom{2}{1}$
These eigen vectors are linearly independent. Therefore $P=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ 1 & 1\end{array}\right]$
Step 3: To find $\boldsymbol{P}^{\mathbf{- 1}}$. Use the formula $\boldsymbol{P}^{\boldsymbol{- 1}}=\frac{\operatorname{adj} \boldsymbol{P}}{|\boldsymbol{P}|}$.
Here $\lceil P\rceil=-3$ and $\operatorname{adjP}=\left(\begin{array}{cc}+1 & -1 \\ -2 & +(-1)\end{array}\right)^{t}=\left(\begin{array}{cc}+1 & -1 \\ -2 & -1\end{array}\right)^{t}=\left(\begin{array}{cc}1 & -2 \\ -1 & -1\end{array}\right)$

$$
P^{-1}=\frac{1}{3}\left(\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right)
$$

Step 4: To find $P^{\boldsymbol{- 1}} A P$

$$
\begin{aligned}
P^{-1} A P & =\frac{1}{3}\left(\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 4 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
3 & -6 \\
3 & 3
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
-9 & 0 \\
0 & 9
\end{array}\right)=\left(\begin{array}{cc}
-3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=D
\end{aligned}
$$

Since Therefore $P^{-1} A P=D$, the given matrix A is diagonalizable.

Section C

1. Find the Characteristic Polynomial and the Minimal Polynomial of the matrix

$$
\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & -1 \\
0 & 2 & 4
\end{array}\right) \cdot \operatorname{cov}(\mathrm{L}-\mathrm{IV})
$$

Solution: The given matirix is $\boldsymbol{A}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right)$. Then the Characteristic equation is $|A-x I|=0$.

Therefore $A-x I=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right)-\mathrm{x}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}2-x & 1 & 0 \\ 0 & 1-x & -1 \\ 0 & 2 & 4-x\end{array}\right)$
$\Rightarrow|A-x I|=0$.
$\Rightarrow\left|\begin{array}{ccc}2-x & 1 & 0 \\ 0 & 1-x & -1 \\ 0 & 2 & 4-x\end{array}\right|=0$.
$\Rightarrow(2-x)[(1-x)(4-x)+2]=0$.
$\Rightarrow(2-x)\left(x^{2}-5 x+6\right)=0$.

$$
\begin{aligned}
& \Rightarrow(2-x)(x-2)(x-3)=0 \\
& \Rightarrow(x-2)^{2}(x-3)=0
\end{aligned}
$$

Therefore the Characteristic polynomial is $(x-2)^{2}(x-3)=0$
Also the possible minimal polynomials are $(x-2)(x-3)$ and $(x-2)^{2}(x-3)$
Now Replace x by A we get $(A-2 I)(A-3 I)$ and $(A-2 I)^{2}(A-3 I)$
Now, $(A-2 I)(A-3 I)=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \neq O$.
A does not satisfy the polynomial $(x-2)(x-3)$.
But, By Cayley Hamilton theorem, Every square matrix satisfies its Characteristic equation.
Therefore by above theorem, A satisfies the polynomial $(x-2)^{2}(x-3)$.
Minimal Polynomial of A is $(x-2)^{2}(x-3)$.
Hence, the Characteristic Polynomial is also the Minimal Polynomial of A.

